Core Capabilities
1. Context Querying
Agents can query any available on-chain context using:
Direct key-value access
Graph-based traversal
Schema-aware search
Example:
import requests
requests.get("https://api.dctx.ai/context/user.reputation.score", params={"address": "0xabc..."}).json()
2. Context Subscription
Agents can subscribe to updates for specific entities or schema types, enabling real-time reactions.
Example:
# Simulated polling or event listener
while True:
signal = requests.get("https://api.dctx.ai/context/market.signal.volatility", params={"token": "ETH"}).json()
if signal.get("alert") == True:
print("⚠️ Volatility spike detected!")
time.sleep(5)
3. Context Injection into AI Reasoning
Decontext allows context data to be injected directly into:
LLM prompts
Strategy modules
Multi-agent communication channels
Example Prompt:
context = requests.get("https://api.dctx.ai/context/user.reputation.score", params={"address": "0xabc..."}).json()
prompt = f"User 0xABC has {context['score']} reputation and {context['votes']} governance votes in the last 30 days."
4. Behavioral Triggers
Agents can bind behaviors to context events using rule sets:
“If wallet stake > 10 ETH AND behavior score > 80, initiate high-tier offer.”
“If DAO proposal passes, trigger knowledge sync.”
Last updated